Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.359
Filter
1.
World J Orthop ; 15(3): 285-292, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38596186

ABSTRACT

BACKGROUND: The traditional Gamma3 nail is a mainstream treatment for femoral intertrochanteric fractures. Literature reports that the Gamma3U-blade system can increase the stability of the Gamma3 nail and reduce complication incidence. However, comparative studies between the Gamma3U-blade and Gamma3 systems are limited; hence, this meta-analysis was performed to explore the clinical efficacy of these two surgical methods. AIM: To investigate the clinical efficacy of Gamma3 and Gamma3 U-blade for intertrochanteric fractures. METHODS: A computerized search for Chinese and English literature published from 2010 to 2022 was conducted in PubMed, Cochrane, CNKI, Wanfang, and VIP databases. The search keywords were gamma 3, gamma 3 U blade, and intertrochanteric fracture. Additionally, literature tracking was performed on the references of published literature. The data were analyzed using Revman 5.3 software. Two individuals checked the inputs for accuracy. Continuous variables were described using mean difference and standard deviation, and outcome effect sizes were expressed using ratio OR and 95% confidence interval (CI). High heterogeneity was considered at (P < 0.05, I2 > 50%), moderate heterogeneity at I2 from 25% to 50%, and low heterogeneity at (P ≥ 0.05, I2 < 50%). RESULTS: Following a comprehensive literature search, review, and analysis, six articles were selected for inclusion in this study. This selection comprised five articles in English and one in Chinese, with publication years spanning from 2016 to 2022. The study with the largest sample size, conducted by Seungbae in 2021, included a total of 304 cases. Statistical analysis: A total of 1063 patients were included in this meta-analysis. The main outcome indicators were: Surgical time: The Gamma3U blade system had a longer surgical time compared to Gamma3 nails (P = 0.006, I2 = 76%). Tip-apex distance: No statistical significance or heterogeneity was observed (P = 0.65, I2 = 0%). Harris Hip score: No statistical significance was found, and low heterogeneity was detected (P = 0.26, I2 = 22%). Union time: No statistical significance was found, and high heterogeneity was detected (P = 0.05, I2 = 75%). CONCLUSION: Our study indicated that the Gamma3 system reduces operative time compared to the Gamma3 U-blade system in treating intertrochanteric fractures. Both surgical methods proved to be safe and effective for this patient group. These findings may offer valuable insights and guidance for future surgical protocols in hip fracture patients.

2.
Small Methods ; : e2301542, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38602282

ABSTRACT

Developing Two-dimensional (2D) Mo-based heterogeneous nanomaterials is of great significance for energy conversion, especially in alkaline hydrogen evolution reaction (HER), however, it remains a challenge to identify the active sites at the interface due to the structure complexity. Herein, the real active sites are systematically explored during the HER process in varied Mo-based 2D materials by theoretical computational and magnetron sputtering approaches first to filtrate the candidates, then successfully combined the MoSi2 and MoO3 together through Oxygen doping to construct heterojunctions. Benefiting from the synergistic effects between the MoSi2 and MoO3, the obtained MoSi2@MoO3 exhibits an unprecedented overpotential of 72 mV at a current density of 10 mA cm-2. Density functional theory calculations uncover the different Gibbs free energy of hydrogen adsorption (ΔGH*) values achieved at the interfaces with different sites as adsorption sites. The results can facilitate the optimization of heterojunction electrocatalyst design principles for the Mo-based 2D materials.

3.
Article in English | MEDLINE | ID: mdl-38628112

ABSTRACT

Soft actuators with stimuli-responsive and reversible deformations have shown great promise in soft robotics. However, some challenges remain in existing actuators, such as the materials involved derived from nonrenewable resources, complex and nonscalable preparation methods, and incapability of complex and programmable deformation. Here, a biobased ink based on cuttlefish ink nanoparticles (CINPs) and cellulose nanofibers (CNFs) was developed, allowing for the preparation of biodegradable patterned actuators by direct ink writing technology. The hybrid CNF/CINP ink displays good rheological properties, allowing it to be accurately printed on a variety of flexible substrates. A bilayer actuator was developed by printing an ink layer on a biodegradable poly(lactic acid) film using extrusion-based 3D printing technology, which exhibits reversible and large bending behavior under the stimuli of humidity and light. Furthermore, programmable and reversible folding and coiling deformations in response to stimuli have been achieved by adjusting the ink patterns. This work offers a fast, scalable, and cost-effective strategy for the development of biodegradable patterned actuators with programmable shape-morphing.

4.
Dev Cell ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38569547

ABSTRACT

The ability of cells to perceive and respond to mechanical cues is essential for numerous biological activities. Emerging evidence indicates important contributions of organelles to cellular mechanosensitivity and mechanotransduction. However, whether and how the endoplasmic reticulum (ER) senses and reacts to mechanical forces remains elusive. To fill the knowledge gap, after developing a light-inducible ER-specific mechanostimulator (LIMER), we identify that mechanostimulation of ER elicits a transient, rapid efflux of Ca2+ from ER in monkey kidney COS-7 cells, which is dependent on the cation channels transient receptor potential cation channel, subfamily V, member 1 (TRPV1) and polycystin-2 (PKD2) in an additive manner. This ER Ca2+ release can be repeatedly stimulated and tuned by varying the intensity and duration of force application. Moreover, ER-specific mechanostimulation inhibits ER-to-Golgi trafficking. Sustained mechanostimuli increase the levels of binding-immunoglobulin protein (BiP) expression and phosphorylated eIF2α, two markers for ER stress. Our results provide direct evidence for ER mechanosensitivity and tight mechanoregulation of ER functions, placing ER as an important player on the intricate map of cellular mechanotransduction.

5.
J Extracell Vesicles ; 13(4): e12425, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38594791

ABSTRACT

Heterotopic ossification (HO) comprises the abnormal formation of ectopic bone in extraskeletal soft tissue. The factors that initiate HO remain elusive. Herein, we found that calcified apoptotic vesicles (apoVs) led to increased calcification and stiffness of tendon extracellular matrix (ECM), which initiated M2 macrophage polarization and HO progression. Specifically, single-cell transcriptome analyses of different stages of HO revealed that calcified apoVs were primarily secreted by a PROCR+ fibroblast population. In addition, calcified apoVs enriched calcium by annexin channels, absorbed to collagen I via electrostatic interaction, and aggregated to produce calcifying nodules in the ECM, leading to tendon calcification and stiffening. More importantly, apoV-releasing inhibition or macrophage deletion both successfully reversed HO development. Thus, we are the first to identify calcified apoVs from PROCR+ fibroblasts as the initiating factor of HO, and might serve as the therapeutic target for inhibiting pathological calcification.


Subject(s)
Extracellular Vesicles , Ossification, Heterotopic , Humans , Endothelial Protein C Receptor , Extracellular Vesicles/pathology , Ossification, Heterotopic/pathology , Ossification, Heterotopic/therapy , Extracellular Matrix , Fibroblasts
6.
Environ Res ; 252(Pt 2): 118940, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38626871

ABSTRACT

Constructed wetlands for wastewater treatment pose challenges related to long-term operational efficiency and greenhouse gas emissions on a global scale. This study investigated the impact of adding peat, humic acid, and biochar into the substrates of constructed wetlands and focused on Cr, and Ni removal, greenhouse gas emissions, and microbial communities in constructed wetlands. Biochar addition treatment achieved the highest removal efficiencies for total Cr (99.96%), Cr (VI) (100%), and total Ni (91.04%). Humic acid and biochar addition both significantly increased the heavy metal content in wetland plant Leersia hexandra and substrates of constructed wetlands. Further analysis of microbial community proportions by high-throughput sequencing revealed that biochar and humic acid treatments enhanced Cr and Ni removal efficiency by increasing the abundance of Bacteroidetes, Geobacter and Ascomycota. Humic acid addition treatment reduced CO2 emissions by decreasing the abundance of Bacteroidetes and increasing that of Basidiomycota. Peat treatment decreased CH4 emissions by reducing the abundance of the Bacteroidetes. Biochar treatment increased the abundance of the Firmicutes, Bacteroidetes, Proteobacteria as well as Basidiomycota, resulting in reduced N2O emissions. Biochar and humic acid treatments efficiently removed heavy metals from wastewater and mitigated greenhouse gas emissions in constructed wetlands by modifying the microbial communities.

7.
J Neurol ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38605227

ABSTRACT

PURPOSE OF REVIEW: Neurodegenerative diseases are still challenging clinical issues, with no curative interventions available and early, accurate diagnosis remaining difficult. Finding solutions to them is of great importance. In this review, we discuss possible exosomal diagnostic biomarkers and explore current explorations in exosome-targeted therapy for some common neurodegenerative diseases, offering insights into the clinical transformation of exosomes in this field. RECENT FINDINGS: The burgeoning research on exosomes has shed light on their potential applications in disease diagnosis and treatment. As a type of extracellular vesicles, exosomes are capable of crossing the blood - brain barrier and exist in various body fluids, whose components can reflect pathophysiological changes in the brain. In addition, they can deliver specific drugs to brain tissue, and even possess certain therapeutic effects themselves. And the recent advancements in engineering modification technology have further enabled exosomes to selectively target specific sites, facilitating the possibility of targeted therapy for neurodegenerative diseases. The unique properties of exosomes give them great potential in the diagnosis and treatment of neurodegenerative diseases, and provide novel ideas for dealing with such diseases.

8.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1225-1236, 2024 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-38658159

ABSTRACT

Phospholipase A2 (PLA2) is widely distributed in animals, plants, and microorganisms, and it plays an important role in many physiological activities. In a previous study, we have identified a secretory PLA2 in Bombyx mori (BmsPLA2-1-1). In this study, we further identified four new sPLA2 genes (BmsPLA2-1-2, BmsPLA2-2, BmsPLA2-3, and BmsPLA2-4) in B. mori genome. All four genes exhibits the characteristic features of sPLA2, including the sPLA2 domain, metal binding sites, and highly conserved catalytic domain. This study completed the cloning, in vitro expression, and expression pattern analysis of the BmsPLA2-4 gene in B. mori. The full length of BmsPLA2-4 is 585 bp, and the recombinant protein obtained through prokaryotic expression has an estimated size of 25 kDa. qRT-PCR analysis revealed that the expression level of BmsPLA2-4 reached its peak on the first day of the fifth instar larval stage. Tissue expression profiling analysis showed that BmsPLA2-4 had the highest expression level in the midgut, followed by the epidermis and fat body. Western blotting analysis results were consistent with those of qRT-PCR. Furthermore, after infecting fifth instar 1-day-old larvae with Escherichia coli and Staphylococcus aureus, the expression level of the BmsPLA2-4 gene significantly increased in 24 h. The findings of this study provides a theoretical basis and valuable experimental data for future related research.


Subject(s)
Bombyx , Phospholipases A2, Secretory , Bombyx/genetics , Bombyx/enzymology , Animals , Phospholipases A2, Secretory/genetics , Phospholipases A2, Secretory/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/metabolism , Larva/genetics , Cloning, Molecular , Staphylococcus aureus/genetics , Staphylococcus aureus/enzymology , Insect Proteins/genetics , Insect Proteins/metabolism , Insect Proteins/biosynthesis , Amino Acid Sequence , Gene Expression Profiling
9.
Int J Surg ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38502853

ABSTRACT

BACKGROUND: Factors influencing recovery after decompression surgery for cauda equina syndrome (CES) are not completely identified. We aimed to investigate the most valuable predictors (MVPs) of poor postoperative recovery (PPR) in patients with CES and construct a nomogram for discerning those who will experience PPR. METHODS: 356 patients with CES secondary to lumbar degenerative diseases treated at *** Hospital were randomly divided into training (N=238) and validation (N=118) cohorts at a 2:1 ratio. Moreover, 92 patients from the **** Hospital composed the testing cohort. Least Absolute Shrinkage and Selection Operator regression (LASSO) was used for selecting MVPs. The nomogram was developed by integrating coefficients of MVPs in the logistic regression, and its discrimination, calibration, and clinical utility were validated in all three cohorts. RESULTS: After 3 to 5 years of follow-up, the residual rates of bladder dysfunction, bowel dysfunction, sexual dysfunction, and saddle anesthesia were 41.9%, 44.1%, 63.7%, and 29.0%, respectively. MVPs included stress urinary incontinence, overactive bladder, low stream, difficult defecation, fecal incontinence, and saddle anesthesia in order. The discriminatory ability of the nomogram was up to 0.896, 0.919, and 0.848 in the training, validation, and testing cohorts, respectively. Besides, the nomogram showed good calibration and clinical utility in all cohorts. Furthermore, the optimal cut-off value of the nomogram score for distinguishing those who will experience PPR was 148.02, above which postoperative outcomes tend to be poor. CONCLUSION: The first pre-treatment nomogram for discerning CES patients who will experience PPR was developed and validated, which will aid clinicians in clinical decision-making.

10.
Acad Radiol ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38508932

ABSTRACT

RATIONALE AND OBJECTIVES: To compare the differences in apparent diffusion coefficient (ADC) and synthetic magnetic resonance (MR) measurements of four region of interest (ROI) placement methods for breast tumor and to investigate their diagnostic performance. METHODS: 110 (70 malignant, 40 benign) newly diagnosed breast tumors were evaluated. The patients underwent 3.0 T MR examinations including diffusion-weighted imaging and synthetic MR. Two radiologists independently measured ADCs, T1 relaxation time (T1), T2 relaxation time (T2), and proton density (PD) using four ROI methods: round, square, freehand, and whole-tumor volume (WTV). The interclass correlation coefficient (ICC) was used to assess their measurement reliability. Diagnostic performance was evaluated using multivariate logistic regression analysis and the receiver operating characteristic (ROC) curves. RESULTS: The mean values of all ROI methods showed good or excellent interobserver reproducibility (0.79-0.99) and showed the best diagnostic performance compared to the minimum and maximum values. The square ROI exhibited superior performance in differentiating between benign from malignant breast lesions, followed by the freehand ROI. T2, PD, and ADC values were significantly lower in malignant breast lesions compared to benign ones for all ROI methods (p < 0.05). Multiparameters of T2 + ADC demonstrated the highest AUC values (0.82-0.95), surpassing the diagnostic efficacy of ADC or T2 alone (p < 0.05). CONCLUSION: ROI placement significantly influences ADC and synthetic MR values measured in breast tumors. Square ROI and mean values showed superior performance in differentiating benign and malignant breast lesions. The multiparameters of T2 + ADC surpassed the diagnostic efficacy of a single parameter.

11.
Eur Radiol ; 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38491129

ABSTRACT

OBJECTIVES: To explore the value of the synthetic MRI (SyMRI), combined with amide proton transfer-weighted (APTw) MRI for quantitative and morphologic assessment of sinonasal lesions, which could provide relative scale for the quantitative assessment of tissue properties. METHODS: A total of 80 patients (31 malignant and 49 benign) with sinonasal lesions, who underwent the SyMRI and APTw examination, were retrospectively analyzed. Quantitative parameters (T1, T2, proton density (PD)) and APT % were obtained through outlining the region of interest (ROI) and comparing the two groups utilizing independent Student t test or a Wilcoxon test. Receiver operating characteristic curve (ROC), Delong test, and logistic regression analysis were performed to assess the diagnostic efficiency of one-parameter and multiparametric models. RESULTS: SyMRI-derived mean T1, T2, and PD were significantly higher and APT % was relatively lower in benign compared to malignant sinonasal lesions (p < 0.05). The ROC analysis showed that the AUCs of the SyMRI-derived quantitative (T1, T2, PD) values and APT % ranged from 0.677 to 0.781 for differential diagnosis between benign and malignant sinonasal lesions. The T2 values showed the best diagnostic performance among all single parameters for differentiating these two masses. The AUCs of combined SyMRI-derived multiple parameters with APT % (AUC = 0.866) were the highest than that of any single parameter, which was significantly improved (p < 0.05). CONCLUSION: The combination of SyMRI and APTw imaging has the potential to reflect intrinsic tissue characteristics useful for differentiating benign from malignant sinonasal lesions. CLINICAL RELEVANCE STATEMENT: Combining synthetic MRI with amide proton transfer-weighted imaging could function as a quantitative and contrast-free approach, significantly enhancing the differentiation of benign and malignant sinonasal lesions and overcoming the limitations associated with the superficial nature of endoscopic nasal sampling. KEY POINTS: • Synthetic MRI and amide proton transfer-weighted MRI could differentiate benign from malignant sinonasal lesions based on quantitative parameters. • The diagnostic efficiency could be significantly improved through synthetic MRI + amide proton transfer-weighted imaging. • The combination of synthetic MRI and amide proton transfer-weighted MRI is a noninvasive method to evaluate sinonasal lesions.

12.
Nanomaterials (Basel) ; 14(6)2024 Mar 17.
Article in English | MEDLINE | ID: mdl-38535681

ABSTRACT

With the wide application of intense lasers, the protection of human eyes and detectors from laser damage is becoming more and more strict. In this paper, we study the nonlinear optical limiting (OL) properties of porous carbon with a super large specific surface area (2.9 × 103 m2/g) using the nanosecond Z-scan technique. Compared to the traditional OL material C60, the porous carbon material shows an excellent broadband limiting effect, and the limiting thresholds correspond to 0.11 J/cm2 for 532 nm and 0.25 J/cm2 for 1064 nm pulses, respectively. The nonlinear scattering experiments showed that the OL behavior was mainly attributed to the nonlinear scattering effect, which is caused by the rapid growth and expansion of bubbles in the dispersion induced by laser irradiation, and the scattered light distribution is consistent with the results of Mie's scattering. These results suggest that porous carbon materials are expected to be applied to the field of laser protection in the future to further protect the human eye and precision optical instruments.

13.
Commun Biol ; 7(1): 325, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38486093

ABSTRACT

Regulating metabolic disorders has become a promising focus in treating intervertebral disc degeneration (IDD). A few drugs regulating metabolism, such as atorvastatin, metformin, and melatonin, show positive effects in treating IDD. Glutamine participates in multiple metabolic processes, including glutaminolysis and glycolysis; however, its impact on IDD is unclear. The current study reveals that glutamine levels are decreased in severely degenerated human nucleus pulposus (NP) tissues and aging Sprague-Dawley (SD) rat nucleus pulposus tissues, while lactate accumulation and lactylation are increased. Supplementary glutamine suppresses glycolysis and reduces lactate production, which downregulates adenosine-5'-monophosphate-activated protein kinase α (AMPKα) lactylation and upregulates AMPKα phosphorylation. Moreover, glutamine treatment reduces NP cell senescence and enhances autophagy and matrix synthesis via inhibition of glycolysis and AMPK lactylation, and glycolysis inhibition suppresses lactylation. Our results indicate that glutamine could prevent IDD by glycolysis inhibition-decreased AMPKα lactylation, which promotes autophagy and suppresses NP cell senescence.


Subject(s)
Intervertebral Disc Degeneration , Rats , Animals , Humans , Intervertebral Disc Degeneration/drug therapy , Intervertebral Disc Degeneration/metabolism , Rats, Sprague-Dawley , Glutamine , AMP-Activated Protein Kinases , Autophagy , Lactates/pharmacology , Lactates/therapeutic use
14.
Article in English | MEDLINE | ID: mdl-38495003

ABSTRACT

Intervertebral disc degeneration (IDD) is the cause of low back pain (LBP), and recent research has suggested that inflammatory cytokines play a significant role in this process. Maslinic acid (MA), a natural compound found in olive plants ( Olea europaea), has anti-inflammatory properties, but its potential for treating IDD is unclear. The current study aims to investigate the effects of MA on TNFα-induced IDD in vitro and in other in vivo models. Our findings suggest that MA ameliorates the imbalance of the extracellular matrix (ECM) and mitigates senescence by upregulating aggrecan and collagen II levels as well as downregulating MMP and ADAMTS levels in nucleus pulposus cells (NPCs). It can also impede the progression of IDD in rats. We further find that MA significantly affects the PI3K/AKT and NF-κB pathways in TNFα-induced NPCs determined by RNA-seq and experimental verification, while the AKT agonist Sc-79 eliminates these signaling cascades. Furthermore, molecular docking simulation shows that MA directly binds to PI3K. Dysfunction of the PI3K/AKT pathway and ECM metabolism has also been confirmed in clinical specimens of degenerated nucleus pulposus. This study demonstrates that MA may hold promise as a therapeutic agent for alleviating ECM metabolism disorders and senescence to treat IDD.

15.
World Neurosurg ; 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38432510

ABSTRACT

OBJECTIVE: The impact of cervical sagittal alignment on cervical facet joint degeneration (CFD) and the risk factors for CFD in patients with degenerative cervical myelopathy (DCM) were investigated in the current study. METHODS: A total of 250 surgical patients with DCM were recruited. The clinical data and radiographical characteristics, including CFD, cervical sagittal balance parameters, Hounsfield unit (HU) values, disc degeneration (DD), and modic change, were collected. The detailed correlation between these characteristics and CFD was analyzed. Characteristics, including CFD, were compared among the various cervical alignment types and different CFD groups. Finally, the risk factors for CFD were revealed via logistic regression. RESULTS: CFD was prevalent in DCM patients. Age, cervical sagittal vertical axis (cSVA), range of motion, T1 slope, thoracic inlet angle, DD, HU value, and modic change correlated with CFD segmentally and globally (P < 0.05). The lordosis and sigmoid types had a significantly higher CFD prevalence (P < 0.05). Furthermore, the average CFD threshold for the severe CFD group was 1.625 (area under the curve, 0.958). Additionally, 167 patients with average CFD <1.625 and 83 patients with CFD of ≥1.625 were classified into the mild CFD group and severe CFD group, respectively. Finally, multivariate analysis was performed, and age, cSVA, HU value, modic change, and DD were determined to be independent risk factors for CFD. CONCLUSIONS: The load distribution tends to shift to a more shear-like pattern in the sigmoid and kyphosis types and in those with a higher cSVA, thereby promoting CFD. Aging, cervical malalignment, low bone mineral density, DD, and modic change were revealed to result in high risks of CFD.

16.
Nat Med ; 30(3): 797-809, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38429524

ABSTRACT

Immune checkpoint blockade (ICB) targeting programmed cell death protein 1 (PD-1) and cytotoxic T lymphocyte protein 4 (CTLA-4) can induce remarkable, yet unpredictable, responses across a variety of cancers. Studies suggest that there is a relationship between a cancer patient's gut microbiota composition and clinical response to ICB; however, defining microbiome-based biomarkers that generalize across cohorts has been challenging. This may relate to previous efforts quantifying microbiota to species (or higher taxonomic rank) abundances, whereas microbial functions are often strain specific. Here, we performed deep shotgun metagenomic sequencing of baseline fecal samples from a unique, richly annotated phase 2 trial cohort of patients with diverse rare cancers treated with combination ICB (n = 106 discovery cohort). We demonstrate that strain-resolved microbial abundances improve machine learning predictions of ICB response and 12-month progression-free survival relative to models built using species-rank quantifications or comprehensive pretreatment clinical factors. Through a meta-analysis of gut metagenomes from a further six comparable studies (n = 364 validation cohort), we found cross-cancer (and cross-country) validity of strain-response signatures, but only when the training and test cohorts used concordant ICB regimens (anti-PD-1 monotherapy or combination anti-PD-1 plus anti-CTLA-4). This suggests that future development of gut microbiome diagnostics or therapeutics should be tailored according to ICB treatment regimen rather than according to cancer type.


Subject(s)
Gastrointestinal Microbiome , Neoplasms , Humans , Immune Checkpoint Inhibitors/therapeutic use , Gastrointestinal Microbiome/genetics , Neoplasms/drug therapy , Neoplasms/genetics
17.
Cancer Med ; 13(6): e7052, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38523552

ABSTRACT

BACKGROUND: Carcinoma of unknown primary (CUP) remains an important tumor entity and a disproportionate cause of cancer mortality. Little is known about the contemporary clinical characteristics, treatment patterns, and outcomes of CUP patients based on updated international classification guidelines. We evaluated a contemporary CUP cohort to provide insight into current clinical practice and the impact of tissue of origin assignment, site-specific and empirical therapy in a real-world setting. METHODS: We conducted a retrospective cohort study of CUP patients, as defined by the updated European Society of Medical Oncology (ESMO) 2023 guidelines, across three tertiary referral centers in Australia between 2015 and 2022. We analyzed clinical characteristics, treatment patterns, and survival outcomes using the Kaplan-Meier method and Cox regression proportional hazard model between favorable and unfavorable risk groups. RESULTS: We identified a total of 123 CUP patients (n = 86 unfavorable, n = 37 favorable risk as per the 2023 ESMO guidelines). Sixty-four patients (52%) were assigned a tissue of origin by the treating clinician. Median progression free survival (PFS) was 6.8 (95% confidence interval (CI) 5.1-12.1) months and overall survival (OS) 10.2 (95% CI 6.0-18.5) months. Unfavorable risk (hazard ratio [HR] 2.9, p = 0.006), poor performance status (HR 2.8, p < 0.001), and non-squamous histology (HR 2.5, p < 0.05) were associated with poor survival outcome. A total of 70 patients (57%) proceeded to systemic therapy. In patients with non-squamous histology and unfavorable risk, site-specific therapy compared to empirical chemotherapy did not improve outcome (median OS 8.2 vs. 11.8 months, p = 0.7). CONCLUSIONS: In this real-world cohort, CUP presentations were heterogenous. Overall survival and rates of systemic treatment were poor. Poor performance status and unfavorable risk were associated with worse survival. For most patients, site-specific therapy did not improve survival outcome. Improved and timely access to diagnostic tests and therapeutics for this group of patients is urgently required.


Subject(s)
Carcinoma , Neoplasms, Unknown Primary , Humans , Retrospective Studies , Neoplasms, Unknown Primary/therapy , Neoplasms, Unknown Primary/pathology , Proportional Hazards Models , Progression-Free Survival
18.
Article in English | MEDLINE | ID: mdl-38504579

ABSTRACT

Aims: Intervertebral disc degeneration (IDD) is closely related to low back pain, which is a prevalent age-related problem worldwide; however, the mechanism underlying IDD is unknown. Glutamine, a free amino acid prevalent in plasma, is recognized for its anti-inflammatory and antioxidant properties in various diseases, and the current study aims to clarify the effect and mechanism of glutamine in IDD. Results: A synergistic interplay was observed between pyroptosis and ferroptosis within degenerated human disc specimens. Glutamine significantly mitigated IDD in both ex vivo and in vivo experimental models. Moreover, glutamine protected nucleus pulposus (NP) cells after tert-butyl hydroperoxide (TBHP)-induced pyroptosis, ferroptosis, and extracellular matrix (ECM) degradation in vitro. Glutamine protected NP cells from TBHP-induced ferroptosis by promoting the nuclear factor erythroid 2-related factor 2 (Nrf2) accumulation by inhibiting its ubiquitin-proteasome degradation and inhibiting lipid oxidation. Innovation and Conclusions: A direct correlation is evident in the progression of IDD between the processes of pyroptosis and ferroptosis. Glutamine suppressed oxidative stress-induced cellular processes, including pyroptosis, ferroptosis, and ECM degradation through deubiquitinating Nrf2 and inhibiting lipid oxidation in NP cells. Glutamine is a promising novel therapeutic target for the management of IDD.

19.
Article in English | MEDLINE | ID: mdl-38521631

ABSTRACT

OBJECTIVE: The effect of preoperative malnutrition and sarcopenia on outcomes in patients with abdominal aortic aneurysm (AAA) after open surgical repair (OSR) and endovascular abdominal aortic aneurysm repair is undefined. The authors conducted the study to address this issue in this population. DESIGN: A retrospective observational study. SETTING: A large tertiary hospital. PARTICIPANTS: Patients with AAA who underwent OSR and endovascular aneurysm repair (EVAR). INTERVENTIONS: Evaluation of nutritional status (Nutritional Risk Screening 2002 [NRS 2002] and the Controlling Nutritional Status [CONUT] scores), muscle size (skeletal muscle index), and postoperative parameters. MEASUREMENTS AND MAIN RESULTS: A total of 199 patients were reviewed from January 2020 to December 2022. Patients weew categorized into group A (CONUT <4) and group B (CONUT ≥4) based on whether their CONUT scores were less than 4. The mortality (p = 0.004) and the incidence of Clavien-Dindo class III complications (p = 0.007) in group B were higher than those in group A. CONUT score was an independent risk factor for midterm mortality (hazard ratio 1.329; 95% CI, 1.104-1.697; p = 0.002) and Clavien-Dindo class III complications (odds ratio 1.225; 95% CI, 1.012-1.482; p = 0.037) according to univariate and multivariate analyses, whereas NRS 2002 score and sarcopenia were not. Kaplan-Meier curves showed a lower midterm survival rate in group B (log-rank p < 0.001). CONCLUSION: In patients with AAA undergoing OSR or EVAR, a CONUT score ≥4 was associated with increased Clavien-Dindo class III complications and mortality. Preoperative nutritional status should be evaluated and optimized in this high-risk population.

20.
Sensors (Basel) ; 24(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38475226

ABSTRACT

The remarkable light perception abilities of the mantis shrimp, which span a broad spectrum ranging from 300 nm to 720 nm and include the detection of polarized light, serve as the inspiration for our exploration. Drawing insights from the mantis shrimp's unique visual system, we propose the design of a multifunctional imaging sensor capable of concurrently detecting spectrum and polarization across a wide waveband. This sensor is able to show spectral imaging capability through the utilization of a 16-channel multi-waveband Fabry-Pérot (FP) resonator filter array. The design incorporates a composite thin film structure comprising metal and dielectric layers as the reflector of the resonant cavity. The resulting metal-dielectric composite film FP resonator extends the operating bandwidth to cover both visible and infrared regions, specifically spanning a broader range from 450 nm to 900 nm. Furthermore, within this operational bandwidth, the metal-dielectric composite film FP resonator demonstrates an average peak transmittance exceeding 60%, representing a notable improvement over the metallic resonator. Additionally, aluminum-based metallic grating arrays are incorporated beneath the FP filter array to capture polarization information. This innovative approach enables the simultaneous acquisition of spectrum and polarization information using a single sensor device. The outcomes of this research hold promise for advancing the development of high-performance, multifunctional optical sensors, thereby unlocking new possibilities in the field of optical information acquisition.

SELECTION OF CITATIONS
SEARCH DETAIL
...